АБЕРАЦИЯ СВЕТА (ВЕРСИЯ - ЭТО)

Халецкий Михаил Борисович Израиль, г.Хадера, 2023г.

hal123mih@gmail.com

RNJATOHHA

Вывод формул аберрации света на основании ВЕРСИИ Элементарной теории относительности. Физическая интерпретация процесса аберрации света.

Ключевые слова: угол аберрации, центры координат, смещение в пространстве и времени, события, наблюдатели, источник света.

Содержание

- 1. Определение
- 2. Вывод формул для углов наблюдения
- 3. Аберрация света
- 4. Физический процесс регистрации событий
- 5. Критические углы наблюдения
- 6. Заключение
 - © Халецкий М. Б., 2019, Все права защищены, (https://halmich.ru)

Принятые сокращения.

- ЭТО Элементарная теория относительности.
- СТО Специальная теория относительности.
- ИСО Инерциальные системы отсчёта.

1. Определение.

П.1 Аберрация света. Видимое смещение неподвижного объекта при наблюдении его в разных системах отсчёта называется аберрацией света. На рисунке 1 представлена графическая иллюстрация такого смещения. В зависимости от скорости движения приёмника света угол наблюдения объекта над горизонтом меняется. В качестве неподвижной точки принимается начала координат собственной ИСО. Полученные результаты будут справедливы и по отношению к любым другим неподвижным точкам. Неподвижные точки излучают световой сигнал, который улавливают подвижные наблюдатели $N_0(N_1)$ соответствующих ИСО (основной или параллельной) под определённым углом θ к траектории движения приёмника, рисунок 1.

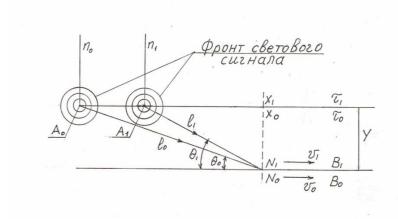


Рисунок 1

Траектории B_1 , B_0 отстоят от осей au_1 , au_0 на одинаковом расстоянии Y абсолютного пространства, l_1 , l_0 — расстояния между центрами координат и наблюдателями в собственных ИСО.

2. Вывод формул для углов наблюдения.

Основой вывода формул углов наблюдения являются преобразования координат в варианте ВЕРСИЯ — ЭТО. Чтобы отделить эти преобразования от преобразований Лоренца в СТО, назовём их кратко Лоренц — ВЕРСИЯ. https://halmich.ru

Из Рисунка 1 определим косинусы углов наблюдения:

$$\cos \theta_0 = \frac{x_0}{l_0} = \frac{x_0}{c_0 t_0}, \quad \cos \theta_1 = \frac{x_1}{l_1} = \frac{x_1}{c_1 t_1}.$$
 (1)

Где: $c_0 = c$ — постоянная скорость света в основной ИСО ($pprox 30*10^7 \ m/c$);

$$c_1 = c/\Big(1 + \frac{v_0^2}{c^2}\Big)$$
 — не постоянная скорость света в параллельной ИСО.

Для наблюдателя N_0 основной ИСО, прямые преобразования:

1)
$$x_0 = x_1 \left(1 + \frac{v_0^2}{c^2} \right)^{\frac{1}{2}} + v_0 t_1 \left(1 + \frac{v_0^2}{c^2} \right)^{-\frac{1}{2}}$$

2)
$$t_0 = t_1 \left(1 + \frac{v_0^2}{c^2} \right)^{-\frac{1}{2}} + x_1 \frac{v_0}{c^2} \left(1 + \frac{v_0^2}{c^2} \right)^{\frac{1}{2}}$$
.

Разделим первое уравнение на второе и на скорость света в основной ИСО,

$$\cos\theta_0 = \frac{x_0}{ct_0} = \frac{\frac{x_1}{ct_1} \left(1 + \frac{v_0^2}{c^2}\right)^{\frac{1}{2}} + \frac{v_0}{c} \left(1 + \frac{v_0^2}{c^2}\right)^{-\frac{1}{2}}}{\left(1 + \frac{v_0^2}{c^2}\right)^{-\frac{1}{2}} + \frac{x_1v_0}{ct_1c} \left(1 + \frac{v_0^2}{c^2}\right)^{\frac{1}{2}}}.$$

Используем выражения (1) и обозначим соотношение $\frac{v_0}{c}=\beta$. В результате последовательных преобразований получаем связь между углами наблюдений с точки зрения наблюдателя N_0 :

$$\cos \theta_0 = \frac{\beta + \cos \theta_1}{1 + \beta \cos \theta_1}, \qquad \sin \theta_0 = \sqrt{1 - \cos^2 \theta_0}. \tag{2}$$

Аналогично

Для наблюдателя N_1 параллельной ИСО, обратные преобразования:

1)
$$x_1 = \frac{x_0 - v_0 t_0}{\left(1 + \frac{v_0^2}{c^2}\right)^{\frac{1}{2}} \left(1 - \frac{v_0^2}{c^2}\right)}$$
,

2)
$$t_1 = \frac{t_0 - x_0 \frac{v_0}{c^2}}{\left(1 + \frac{v_0^2}{c^2}\right)^{-\frac{1}{2}} \left(1 - \frac{v_0^2}{c^2}\right)}.$$

Разделим первое уравнение на второе и на скорость света в параллельной ИСО:

$$\cos \theta_1 = \frac{x_1}{c_1 t_1} = \frac{x_0 - v_0 t_0}{t_0 - x_0 \frac{v_0}{c^2}} \frac{1}{\left(1 + \frac{v_0^2}{c^2}\right)} \frac{1}{c_1} = \frac{\frac{x_0 - v_0}{c t_0} \frac{v_0}{c}}{1 - \frac{x_0 v_0}{c t_0 c}}.$$

Используем выражения (1). В результате последовательных преобразований получим связь между углами наблюдений с точки зрения наблюдателя N_1 :

$$\cos \theta_1 = \frac{\cos \theta_0 - \beta}{1 - \beta \cos \theta_0}, \quad \sin \theta_1 = \sqrt{1 - \cos^2 \theta_1} . \tag{3}$$

3. Аберрация света.

Формулы для углов наблюдения в ВЕРСИИ и СТО совпадают полностью:

$$\cos \theta_0 = \frac{\beta + \cos \theta_1}{1 + \beta \cos \theta_1}; \qquad \cos \theta_1 = \frac{\cos \theta_0 - \beta}{1 - \beta \cos \theta_0}; \qquad (4)$$

$$\sin\theta_0 = \frac{\sqrt{1-\beta^2}\,\sin\theta_1}{1+\beta\cos\theta_1}; \qquad \qquad \sin\theta_1 = \frac{\sqrt{1-\beta^2}\,\sin\theta_0}{1-\beta\cos\theta_0}.$$

Формулы соответствуют варианту движения наблюдателей от источника света. В противном случае скорость v_0 и β имеют отрицательные знаки. Разница углов наблюдения называется углом аберрации $\alpha = \theta_1 - \theta_0$.

Пренебрегая всеми степенями β^n кроме первой ($\beta \ll 1$), получим приближённое выражение для связи углов наблюдения. Косинусы малых углов можно принимать за единицу.

$$\sin \theta_1 \cong \sin \theta_0 \frac{\sqrt{1-\beta^2}}{1-\beta \cos \theta_0} \cong \sin \theta_0 \frac{\sqrt{1-\beta^2}}{1-\beta} \cong \sin \theta_0 \frac{1}{1-\beta}. \tag{5}$$

Умножая числитель и знаменатель на сопряженное выражение $(1+\beta)$, получим соотношение:

$$\sin \theta_1 \cong \sin \theta_0 \frac{1+\beta}{1-\beta^2} \cong (1+\beta) \sin \theta_0. \tag{6}$$

Для малых углов справедливы равенства: $\sin\theta_1=\theta_1+\delta_1$ и $\sin\theta_0=\theta_0+\delta_0$, где δ систематическая погрешность замены синуса угла на значение самого угла в радианах. Следовательно, можно записать: $\delta_1-\delta_0=\pm\Delta\delta\approx 0$:

$$\sin \theta_1 - \sin \theta_0 \cong \theta_1 - \theta_0 \pm \Delta \delta \cong \theta_1 - \theta_0 = \alpha$$

Тогда угол аберрации из уравнения (6) приблизительно равен:

$$\alpha \cong \beta \sin \theta_0 = \frac{v_0}{c} \sin \theta_0 = k \sin \theta_0. \tag{7}$$

Более точное значение аберрации даёт формула:

$$\alpha \cong \left(\sqrt{\frac{1+\beta}{1-\beta}} - 1\right) \sin \theta_0 = k \sin \theta_0. \tag{8}$$

Постоянная годовой аберрации ${m k}$ для средней орбитальной скорости Земли, принятая Международным Астрономическим Союзом, составляет 20,49552" угловых секуд.

4. Физический процесс регистрации событий.

Представим себе длинный коридор, разделённый на две части. Левая часть, это область действия основной системы отсчёта с наблюдателем N_0 . Правая часть, это область действия параллельной системы отсчёта с наблюдателем N_1 . Область основной ИСО покрывает область параллельной ИСО. Иллюстрация приведена на рисунках 2, 3.

Начало события №1

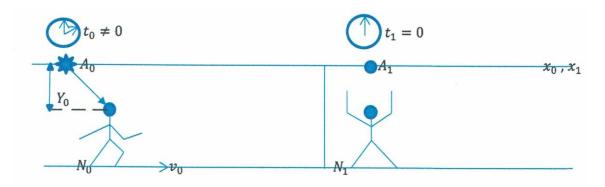


Рисунок 2.

Начало события №2

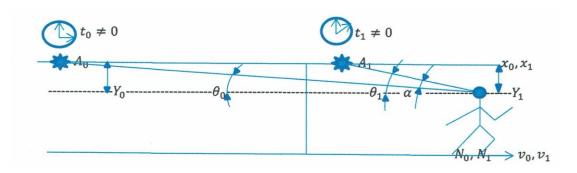


Рисунок 3.

Наблюдатель N_0 основной ИСО включает источник света в центре собственных координат A_0 и запускает часы, событие №1. В основной системе отсчёта начинает протекать время t_0 . Наблюдатель N_0 движется в сторону центра координат A_1 , со скоростью v_0 и непрерывно наблюдает собственный источник света с момента его появления. Его смещение относительно координатной оси Y_0 .

Наблюдатель N_1 параллельной ИСО находится на расстоянии Y_1 от центра координат A_1 в состоянии покоя. Он не видит чужого источника света, его часы стоят, время в параллельной ИСО отсутствует. Когда наблюдатель N_0 достигает центра координат A_1 , он толкает наблюдателя N_1 . Тот в свою очередь включает источник света в центре собственных координат A_1 и запускает собственные часы, событие №2. В параллельной системе отсчёта начинает протекать время t_1 .

С момента столкновения оба наблюдателя совпадают в пространстве и времени обоих ИСО, перемещаются синхронно, в одном направлении. Каждый из них наблюдает свой источник света в центре собственных координат. У каждого наблюдателя собственные единицы измерения расстояний, времени и скорости движения вдоль общей траектории. Смещения Y_0 и Y_1 в **абсолютном** пространстве одинаковые. Поскольку пространственные углы в обоих ИСО инварианты, то их единицы измерения в

радианах совпадают. Наблюдатель N_0 видит начало события в основной ИСО. Наблюдатель N_1 видит последствия этого события в параллельной ИСО.

Существует частный случай, который широко используется в СТО и ЭТО. Это, когда центры координат A_0 , A_1 совпадают в пространстве и времени единой ИСО (абсолютное пространство в его локальном смысле). Оба наблюдателя включают свои источники света одновременно. Лучи наблюдения этих источников совпадают. Аберрация равна нулю. Во любом случае свет различают на «свой» и «чужой».

$$\sin \theta_1 = \sin \theta_0$$
, $\alpha = \theta_1 - \theta_0 = 0$.

В общем случае, сдвиг наблюдения событий во времени вызывает аберрацию лучей наблюдения в пространстве. Точки, в которых наблюдаются события, называются точками наблюдения. События одной ИСО будут наблюдаться в другой ИСО только в том случае, если их последствия реально достигают точек наблюдения противоположной системы отсчёта. Если последствия не наблюдаются, то такие события скрыты за горизонтом событий, т. е. в промежутке между центрами координат двух ИСО. Примерами таких событий являются чёрные дыры во Вселенной.

5. Критические углы наблюдения.

5.1 Реальные углы наблюдения собственных источников света наблюдателями N_0 и N_1 на границе с параллельной системой отсчёта.

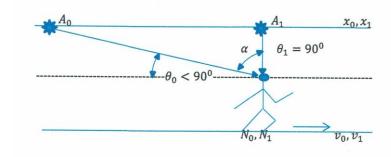


Рисунок 4.

В этом случае: $\cos\theta_1=0$, $\sin\theta_1=1$, $\theta_1=\pi/2$.

$$\cos \theta_0 = \frac{\beta + \cos \theta_1}{1 + \beta \cos \theta_1} = \beta,$$

$$\sin \theta_0 = \frac{\sqrt{1 - \beta^2} \sin \theta_1}{1 + \beta \cos \theta_1} = \sqrt{1 - \beta^2},$$

$$\alpha = \frac{\pi}{2} - \arcsin \theta_0.$$
(9)

Максимальное значение аберрации при $v_0=c$ и $\beta=1$, $\alpha=\frac{\pi}{2}$.

Минимальное значение аберрации при $v_0 \ll c$ и $\beta \approx 0$, $\alpha = 0$.

Наблюдатель N_0 может находится в прошлом, настоящим и будущем времени параллельной системы отсчёта. Угол θ_0 зависит также от поперечного смещения Y_0 . Зная значения Y_0 , аберрацию α и условное положение центра A_1 или A_0 в основной системе отсчёта, можно вычислить расстояние между центрами координат в масштабах основной ИСО. При очень больших значениях Y_0 ситуация с бегунами приходит к виду аберрации далёких звёзд. Векторы скоростей v_0 и v_1 направлены перпендикулярно лучам наблюдения.

$$A_0 \div A_1 \approx Y_0 \tan \alpha$$
.

5.2 Фиктивный угол наблюдения собственного источника света наблюдателем N_1 на границе координат основной ИСО.

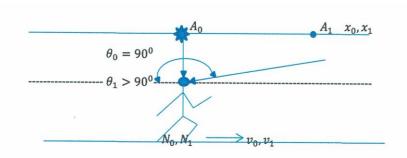


Рисунок 5.

B этом случае: $\cos \theta_0 = 0$, $\sin \theta_0 = 1$, $\theta_0 = \pi/2$.

$$\cos \theta_1 = \frac{\cos \theta_0 - \beta}{1 - \beta \cos \theta_0} = -\beta ,$$

$$\sin \theta_1 = \frac{\sqrt{1 - \beta^2} \sin \theta_0}{1 - \beta \cos \theta_0} = \sqrt{1 - \beta^2} .$$
(10)

Луч наблюдения направлен мимо центра координат $A_1(\theta_1>90^0)$. Наблюдатель N_1 не видит собственного источника света до тех пор, пока угол θ_1 не достигнет критического значения 90^0 . Угол считается фиктивным по тому, что между центрами координат время в параллельной ИСО отсутствует. **Наблюдатель N_1 не может находится в отрицательном времени собственной параллельной системы отсчёта.**

6. Заключение.

- **1.** Выражения типа «*С точки зрения наблюдателя одной системы отсчёта или другой системы отсчёта* » должны быть тщательно обоснованы. Не везде, где находиться один наблюдатель может находиться и другой.
- **2.** Результаты анализа Лоренц ВЕРССИИ в части аберрации света совпадают с выводами официальной СТО. Следовательно, ВЕРСИЯ ЭТО как теория имеет право на существование.
- **3.** Земля с точки зрения аберрации находится в основной ИСО. Аберрацию света далёких звёзд можно наблюдать на Земле только на малых скоростях движения приёмника, т.е. при $v_0 \ll c$.
- **4.** Источники света и наблюдателей всегда можно поменять местами. Неподвижные наблюдатели будут находиться в центрах координат, а в пространстве будет двигаться единый источник света. Результаты анализа при этом не меняются, но интерпретация физического процесса аберрации усложняется.
- **5**. Наблюдатели не имеют массы, энергетический обмен на границе систем отсчёта между ними не происходит. Этот фактор отличает аберрацию от преобразований Лоренца. Аналогично преобразованиям координат с массовыми точками, «чужой» свет из основной ИСО заменяется на «свой» свет в параллельной системе отсчёта [4].

Литература:

- 1. Википедия, http://ru. Wikipedia. org/wiki/ Специальная теория относительности.
- 2. Халецкий М.Б., Преобразования Лоренца (ВЕРСИЯ ЭТО), https://halmich.ru, 2023г.
- 3. Халецкий М.Б., Версия элементарной теории относительности, https://halmich.ru, 2023г.
- 4. Вепринцев В.С., Аберрация света, http://valveprincev.narod.ru/Article3/Part1.html.
- 5. Журнал «ДНА» №56 / Под ред. С.И. Хмельник, «ВЕРСИЯ Элементарной теории относительности», publisherdna@gmal.com, 2022г.