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    Annotation 

    The total kinetic energy of a relativistic electron is composed of the kinetic energy of 

its translational motion and the relativistic energy of its proper rotation. Briefly about 

the main points. 
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    Section 1. Total kinetic energy 

    The total kinetic energy of a relativistic electron is composed of the kinetic energy of 

translational motion and the relativistic energy of its own rotation: 

              𝐸𝑘 =
𝑚𝑣2

2
+ 𝑚𝑐2 −

𝑚𝑐2

√1+
𝑣2

𝑐2

 ;                                                                   (1) 

              𝐸𝑘 = 𝐸𝑠 + 𝐸𝑟  . 

    The relativistic energy of an electron can be emitted as individual photons 

(spontaneous or bremsstrahlung). It can also participate in elastic collisions of electrons 

with external photons (direct and inverse Compton effects). The total kinetic energy of 

a particle changes in specific portions (quanta): 

                𝐸𝑟 = 𝑚𝑐2 −
𝑚𝑐2

√1+
𝑣2

𝑐2

 .                                                                   (2) 

    The process of energy quantization defines the energy levels of the electron states in 

a vacuum. 

     

    Section 2. Relativistic parameter 

    The total kinetic energy of an electron in neighboring states: 

              𝐸𝑘,𝑖 = 𝐸𝑠,𝑖 + 𝐸𝑟,𝑖;                   − initial state.                                (3)                          

            𝐸𝑘,𝑖+1 = 𝐸𝑠,𝑖+1 + 𝐸𝑟,𝑖+1;      − neighboring state. 

     Depending on the situation, the energy of a relativistic quantum is subtracted from 

or added to the total energy of the initial state. The electron mass is an invariant 

quantity. Elementary Relativity (ETR) uses a relativistic parameter—the ratio of the 

electron's velocity to the speed of light squared (the square of the relative velocity): 

                 𝑥𝑖 =
𝑣𝑖

2

𝑐2
 ;   𝑥𝑖+1 =

𝑣𝑖+1
2

𝑐2
 ;    −    neighboring states.                          (4) 

    The index 𝑖 −    is the order of discrete values of the electron's effective velocity. The 

index runs through a series of natural numbers: 𝑖 = 0, 1, 2, 3, … 𝑛 − 1, 𝑛. A value of zero 

corresponds to the maximum or minimum possible relativistic velocity of an electron in 

a vacuum. 

     

     Section 3. Bremsstrahlung 

    Let's consider the bremsstrahlung of photons from the wave surface of an ultra-

relativistic electron. The relativistic energy is interpreted as the internal photon. The 

initial velocity of the electron is taken to be the speed of light, 𝑣0 = с . 
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                                                         Figure 1 

    In Figure 1, 𝜈′ − is the frequency of the emitted photon, and ℎ −  is Planck's constant. 

After the emission of the internal photon, recombination of the total kinetic energy 

occurs. The remaining electron energy is again decomposed into translational and 

relativistic components according to the formula: 

                
𝑚𝑣𝑖

2

2
=

𝑚𝑣𝑖+1
2

2
+ 𝑚𝑐2 −

𝑚𝑐2

√1+
𝑣𝑖+1

2

𝑐2

 ;           𝐸𝑟,𝑖 = ℎ𝜈′.                 (5) 

    It should be noted that the movement of an electron close to the speed of light is not 

a metastable state for a material particle. 

 

    Section 4. Scattering of energetic photons 

    Let's consider the scattering of external energetic photons by relativistic electrons. 

The initial velocity of the electron is taken to be the minimum possible relativistic 

velocity, 𝑣0 = 𝑣𝑚𝑖𝑛 . This value is defined more precisely below in the text. 

     

                                                Figure 1  

    An electron receives a portion of relativistic energy, 𝐸𝑟,𝑖+1 , from an external photon. 

After the transfer of this energy quantum, the electron's total energy recombines 

according to the formula: 
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𝑚𝑣𝑖+1

2

2
=

𝑚𝑣𝑖
2

2
+ 𝑚𝑐2 −

𝑚𝑐2

√1+
𝑣𝑖

2

𝑐2

 ;         𝐸𝑟,𝑖+1 = ℎ𝜈′.                      (6) 

    The previous values of translational and relativistic energy are combined into a new 

value of translational energy, 𝐸𝑠,𝑖+1. The order of the relative velocity indices is reversed. 

 

    Section 5. Recombination equations of relativistic parameters 

    The recombination of the total energy leads to two separate equations in terms of the 

relativistic parameters: 

      A)    (𝑥𝑖+1 − 𝑥𝑖 + 2)2(1 + 𝑥𝑖+1) − 4 = 0,  decrease in speed.        (7) 

      B)    (𝑥𝑖 − 𝑥𝑖+1 + 2)2(1 + 𝑥𝑖) − 4 = 0,       increase in speed. 

    The axis of rotation of an electron in an atom undergoes precession. The precession 

energy is characterized by the fine-structure constant, α: 

                   𝐸ℎ,𝑖 =
𝛼2

8

𝑚𝑐2

√1+
𝑣𝑖

2

𝑐2

 . 

    When an electron transitions from a bound to a free state, the precession energy 

remains virtually unchanged. From the Fermi surface inside metals to the speed of light 

in a vacuum, the range of this energy variation is 3.4 to 2.4 eV. In the general equation 

for the total electron energy, precession enters as a constant with a negative sign. The 

exact equations for the recombination of relativistic parameters (𝑥𝑖 , 𝑥𝑖+1) are written 

as: 

A)  (𝑥𝑖+1 − 𝑥𝑖 + 2)2(1 + 𝑥𝑖+1) − 4 = −𝛼2 = (𝛼𝑗)2.                (8) 

B)  (𝑥𝑖 − 𝑥𝑖+1 + 2)2(1 + 𝑥𝑖) − 4 = −𝛼2 = (𝛼𝑗)2. 

    Solutions to the equations are sought relative to the parameter 𝑥𝑖+1. Precession is 

reactive energy, so the imaginary unit 𝑗 is used. The constant 𝛼 has no significant effect 

on energy recombination in a vacuum. However, taking it into account in type A, 

equations allows us to calculate the minimum relativistic velocity of an electron in a 

vacuum. 

 

    Section 6. Minimum relativistic speed 

    The minimum relativistic speed can be calculated by transforming the type A 

expression to the form: 

    𝑥𝑖+1
3 + 𝑥𝑖+1

2 (5 − 2𝑥𝑖) + 𝑥𝑖+1(8 − 6𝑥𝑖 + 𝑥𝑖
2) + (𝑥𝑖

2 − 4𝑥𝑖 + 𝛼2) = 0.  (9) 
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    This expression forms a system of sequential equations at index i+1. Each solution to 

the preceding equation is the initial condition for the solution of the subsequent 

equation. The initial condition is taken to be 𝑥0 ≈ 1 (the speed of light). The equations 

have positive real solutions if the free term of expression (9) is less than or equal to zero, 

or greater than or equal to minus three. The remaining solutions are complex. A total of 

16 equations, or 16 discrete values of the relativistic parameter, are formed. 

    It is not possible to use expression type A to determine the energy levels of an electron 

for the following reasons: 

    1)  The motion of a material particle close to the speed of light is an unstable state; 

the maximum velocity is not precisely determined. 

    2)  Sequential calculation of the squares of the relative velocity creates a systematic 

error that accumulates as the index 𝑖 + 1 increases. 

    We find the speed of the electron at which the equality is fulfilled: 

                𝑥𝑖
2 − 4𝑥𝑖 + 𝛼2 = 0 ;                                                                  (10) 

              𝑥𝑚𝑖𝑛 = 2 − √4 − 𝛼2 ; 

              𝑣𝑚𝑖𝑛 = 𝑐√𝑥𝑚𝑖𝑛 ≅
1

2
𝛼𝑐 = 1.09385 ∙ 106 𝑚𝑠−1. 

    To calculate the minimum relativistic speed, the exact value of the speed of light, 𝑐 =

299.792 458 ∙ 106 𝑚𝑠−1, and the exact value of the fine-structure constant, 𝛼 =

7.297 352 569 ∙ 10−3, are used. 

     

    Section 7. Quantization of kinetic energy 

    We consistently arrive at the need to analyze a type B equation. This expression also 

forms a system of successive equations of the form:  

                            𝑥𝑖+1 = 𝑥𝑖 + 2 −
√4−𝛼2

√1+𝑥𝑖
 .                                                  (11) 

    The initial value of the relativistic parameter is taken to be 𝑥0 = 𝑥𝑚𝑖𝑛 from Section 6. 

The number of energy states of the particle is 16. We take the numerator of the fraction 

to be √4 − 𝛼2 ≈ 2. We obtain the equation in the form: 

                            𝑥𝑖+1 = 𝑥𝑖 + 2 −
2

√1+𝑥𝑖
 .                                                    (12) 

   The expression for the fraction is expanded in a Taylor series. Since the initial value 

𝑥0 ≪ 1, we only use the first two terms in the expansion: 

              
1

√1+𝑥𝑖
≈ 1 −

1

2
𝑥𝑖. 
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     The equation can be written as: 

              𝑥𝑖+1 ≈ 𝑥𝑖 + 2 − 2 + 𝑥𝑖 = 2𝑥𝑖 . 

     Then:  

              𝑥0 = 1 ∙ 𝑥0 = 20𝑥0 ; 

            𝑥1 = 2 ∙ 𝑥0 = 21𝑥0 ; 

              𝑥2 = 2 ∙ 2 ∙ 𝑥0 = 22𝑥0 ; 

              𝑥3 = 2 ∙ 2 ∙ 2 ∙ 𝑥0 = 23𝑥0 ; 

               _   _   _   _  _  _  _  _  _  _  _  _  _  _ 

              𝑥16 = 2 ∙ 2 ∙ 2 ∙ − − − −  ∙ 2 ∙ 𝑥0 = 216𝑥0 ; 

    We replace the sequence of discrete values of the relativistic parameter with the 

number of quantum states of the electron energy. 

             𝑛 = 𝑖 + 1,  где:  𝑛 = 0, 1, 2, 3, … … … 16.                                (13) 

    The value 𝑖 = −1 should be understood as the classical state of the particle (𝑣 <

𝑣𝑚𝑖𝑛) preceding the relativistic state. The number of quantum states should equal the 

number of equations from Section 6. For metastable states, the relativistic parameter is 

determined by a power function: 

              𝑥𝑛 = 2𝑛𝑥0 .                                                                                   (14) 

The resulting dependence works well at speeds 𝑣 ≤ 10 ∙ 106 𝑚𝑠−1. At speeds greater 

than this value, the function begins to diverge from the calculated values using formula 

(12). A correction of the exponent is necessary for unstable conditions. In a scalar field 

of discrete speeds, a good approximation is provided by a power function of the form: 

              𝑥𝑛 = 𝑥0 ∙ 2𝑛 ∙ 2𝑛∙𝛿(𝑛) .                                                                              (15) 

    Here δ(n)≪1, the index responsible for the broadening of electron energy levels in a 

vacuum or the ranges of allowed energies. We assume that δ(n) is directly proportional 

to the number of the electron's quantum state. Then: 

              𝛿(𝑛) = 𝑘𝑛 ∙ 𝑛 + 𝑏 . 

The following values of 𝑘𝑛 and 𝑏 were obtained empirically: 

              𝑘𝑛 = 8.71471657 ∙ 10−4 ;      𝑏 = −16.42943314 ∙ 10−4. 
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    A consistent calculation of the relativistic parameter using formula (15) yields good 

agreement. For high-energy particles, strictly defined energy levels do not exist. Ranges 

of allowed energies are formed. The lower value of the range corresponds to the 

particle's metastable state. The upper value corresponds to an unstable state. Within 

these ranges, the emission and absorption of photon energy is possible without 

changing the particle's ground energy state. In all states, the total kinetic energy of an 

electron in a vacuum is calculated using the same formulas: 

              𝐸𝑠,𝑛 =
1

2
𝑚𝑐2𝑥𝑛;                                                                              (16) 

              𝐸𝑟,𝑛 = 𝑚𝑐2 (1 −
1

√1+𝑥𝑛
) ; 

              𝐸ℎ,𝑛 =
𝛼2

8

𝑚𝑐2

√1+𝑥𝑛
 ; 

            𝐸𝑘,𝑛 = 𝐸𝑠,𝑛 + 𝐸𝑟,𝑛 − 𝐸ℎ,𝑛 ; 

            𝑥𝑛
′ = 𝑥0 ∙ 2𝑛 ∙ 2𝑛∙𝛿(𝑛) ;   −    unstable condition; 

            𝑥𝑛 = 2𝑛;    −   metastable state; 

              𝑥0 =
𝛼2

4
 ; 

            𝑣0 =
1

2
𝛼𝑐 ; 

            𝑣𝑛
′ = 𝑐√𝑥𝑛

′  ;   −  unstable condition; 

              𝑣𝑛 = 𝑐√𝑥𝑛 ;   −  metastable state. 

 

    Section 8. Energy levels in a vacuum 

    It's impossible to show all the energy and velocity calculations in this article. However, 

the calculation of the energy level widths (ranges) is of interest. 

              ∆𝐸 = 𝐸𝑘
′ − 𝐸𝑘  . 

 

    Here: 

    𝐸𝑘 − is the total kinetic energy of an electron in a metastable state; 

    𝐸𝑘
′ − is the total kinetic energy of an electron in an unstable state. 

    The calculation results and energy level diagram are presented below. 
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𝑛 𝑣′ ∗ 106 𝑚𝑠−1 𝑣 ∗ 106 𝑚𝑠−1  𝐸𝑘
′  𝑒𝑉  𝐸𝑘  𝑒𝑉  ∆𝐸 𝑒𝑉 

0 1.09385 1.09385          03.402  03.402 ≈ 0 

1 1.54694 1.54694 10.204 10.204 ≈ 0 
2 2.18772 2.18770 23.811 23.812 ≈ 0 

3 3.09700 3.09387 51.133 51.023 00.110 
4 4.38659 4.37540 106.000 105.442 00.558 
5 6.21692 6.18775 216.325 214.268 02.057 
6 8.81630 8.75080 438.408 431.868 06.540 
7 12.51005 12.37550 885.877 866.868 19.014 
8 17.76210 17.50160 1 788.117 1 736.020 52.097 
9 25.23434 24.75100 3 607.689 3 471.027 136.662 
10 35.87169 35.00320 7 273.933 6 927.956 345.977 
11 51.02395 49.50200 14 642.634 13 669.288 973.346 
12 72.62041 70.00640 29 353.598 27 317.738 2 035.86 
13 103.42027 99.00400 58 341.903 53 638933 4 702.97 
14 147.37199 140.01280 114 158.219 103 737.020 10 421.20 
15 210.12928 198.00800 218 083.754 196 075.537 22 008.22 
16 299.792 350 280.025600 405 186.442 360 500.517 44 685.93 
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    In the diagram: 

    𝐸𝑝 − is the depth of the potential well for electrons in metals; It ranges from 3 to 10 

eV. The surface of the potential well is taken as the reference point for the kinetic 

energy of classical electrons in a vacuum. 

    𝐸𝑘 − is the total kinetic energy of a relativistic electron; It is measured from an energy 

of +3.4 eV, which corresponds to the initial level of relativistic electron energies in a 

vacuum (n=0). The velocity values in the diagram are given for unstable states. 

     

   Section 9. Relationship of energy with electron momentum 

    Let's assume that a particle with an unknown structure acts on the electron's wave 

surface. This particle determines the relativistic energy and relativistic momentum 

(𝐸𝑟,𝑖;  𝑝𝑟,𝑖). The electron's constant mass is concentrated in the Compton sphere. When 

the kinetic energy of the electron changes, the unknown particle transitions to the state 

of an internal photon. 

              𝐸𝑟 = 𝑚𝑐2 −
𝑚𝑐2

√1+
𝑣2

𝑐2

= ℎ𝜈′.                                                             (17) 

Let us write down the basic equation of the relationship between energy and 

momentum for a relativistic particle [article from the book “VERSION of Elementary 

Theory of Relativity”, Section 3.4]. 

              𝐸𝑟,𝑖
2 = 2𝐸𝑟,𝑖𝑚𝑐2 − 𝑝𝑟,𝑖

2 𝑐2. 

    We replace the relativistic energy of the particle with the equivalent photon, 𝐸𝑟,𝑖
2 =

𝑝𝛾,𝑖
2 𝑐2. The mass of the unknown particle is zero, m=0. We obtain the following relations: 

              𝑝𝛾,𝑖
2 = −𝑝𝑟,𝑖

2  ; 

              𝑝𝛾,𝑖 = 𝑗𝑝𝑟,𝑖  ; 

              |𝑝𝛾,𝑖| = |𝑝𝑟,𝑖|. 

The vectors of the relativistic momentum and the momentum of the internal photon are 

shifted in space at an angle of 900. They are equal in magnitude and do not act 

simultaneously. In the ideal case, the momentum of the internal photon at the moment 

of change in kinetic energy will be directed along  the trajectory of motion, 𝑝𝛾,𝑖||𝑝⃗𝑠,𝑖. 

Ideal cases are possible in the direct or inverse Compton effect. In non-ideal cases, the 

angle θ between the scattered photon and the trajectory of the electron must be taken 

into account [1]. 
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   Section 10. Electron and photon momenta 

    Let's consider an ideal case of particle momentum change. The electron's kinetic 

energy changes from the initial state to the final state. Below are the vector diagrams of 

momenta in adjacent states (in absolute units). Here, 𝑥 denotes the coordinate axis 

along the electron's trajectory. We determine the electron's momentum along this 

trajectory. 

     

               a) Initial state                                             b) Final state 

                   𝑝𝑒,𝑖 = 𝑝𝑠,𝑖                                                     𝑝𝑒,𝑖+1 = 𝑝𝑠,𝑖 ± 𝑝𝛾,𝑖 = 𝑝𝑠,𝑖+1 

                   𝑝𝑟,𝑖 = |𝑝𝛾,𝑖|                                                 𝑝𝑟,𝑖+1 = |𝑝𝛾,𝑖+1| 

    In the final state, the vector 𝑝⃗𝑟,𝑖 rotates clockwise or counter clockwise and becomes 

the vector 𝑝⃗𝛾,𝑖. The vectors 𝑝𝑟,𝑖, 𝑝𝑟,𝑖+1 − are the relativistic momentum vectors of the 

electron's proper rotation and act perpendicularly to the path of motion. 

    The plus sign corresponds to an increase in the electron's kinetic energy. A new 

quantum of relativistic energy is transferred from an external source (accelerating 

fields, energetic photons—the direct Compton effect). The electron absorbs energy in 

strictly defined portions. Momentum changes in discrete values. 

    The minus sign corresponds to a decrease in the electron's kinetic energy. A new 

quantum of relativistic energy is replaced by an internal source (the energy of proper 

translational motion 𝐸𝑠,𝑖. The energy of the internal-photon is emitted in the 

bremsstrahlung field or transferred to low-energy photons—the inverse Compton 

effect. Momentum changes in discrete values. 

 

    Conclusions: 

1.   Discrete values of the relativistic parameter are independent of time and spatial 

coordinates. Only the square of the relative velocity (𝑥𝑖 = 𝛽𝑖
2) determines the 

quantum states of a particle in a vacuum. This situation is possibly related to the 

concept of locality and non-locality of physical processes in the surrounding 

space. Heisenberg's uncertainty principle is confirmed. 

2.  It's possible that the ranges of allowed energies of motion in a vacuum have 

additional sublevels. Mathematically, such a problem is solved quite simply, 

based on expression (15). However, no logical justification is apparent. The 

number of cubic equations based on expression (9) does not exceed 16. 
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3. The electron's transition to a relativistic state occurs abruptly, with a minimum 

velocity of 1.09385 𝑚𝑠−1. A possible cause is the actual effect of the physical 

vacuum. 

4. The electron energy equations do not require renormalization. The total kinetic 

energy does not tend to infinity upon reaching the speed of light. 
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